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I. INTRODUCTION 

The cen t r a l  problem of the Contract has been the formulation of an 

optimum inversion technique for inferr ing v e r t i c a l  temperature s t ruc tu re  

from remote radiometric observations. I n  order t o  focus on the d i f f i c u l t -  

ies inherent i n  the  inversion process, l e t  u s  assume the  atmosphere is  

representable by a plane-paral le l  model i n  loca l  thermodynamic equi l -  

ibrium. The r ad ia t ion  in t ens i ty  intercepted on v e r t i c a l  monochromatic 

viewing is given by the t r ans fe r  equation as 
00 

-KU 
I ( K )  - !B(u) e Kdu , 

0 

with B the Planck in tens i ty ,  K the monochromatic absorption coef f ic ien t ,  

and u the inass cross-section of the absorber. Thus the  atmosphere i s  a 

f i l t e r  which transforms the temperature dependence with depth B(u) i n t o  

the va r i a t ion  of upwelling in tens i ty  with frequency I ( K ) .  We can 

write the  formal so lu t ion  f o r  the temperature a t  once as the inverse 

Laplace transform of the  in tens i ty  

The d i f f i c u l t y  is t h a t  the in tens i ty  is not known as a continuous 

function, but is sensed only a t  cer ta in  frequencies. Since I is t he  

transform of a physically meaningful temperature p r o f i l e  and therefore  

a smooth curve, the problem becomes one of construct ing the optimum 

in te rpola t ion  formula yielding the i n t e n s i t y  I ( K )  from the  p a r t i a l  know- 
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i *  ledge I - Ii at K - K 

Various functions have been tried. Perhaps the simplest is to fit 

the intensity curve with a sum of the inverse powere of the absorption 

coefficient K 

I ( K )  Kb(K) a 2" 2 , 
j-0 

where the superscript denotes the jth power of K . 
(3) 

This is equivalent to approximating the source function by a power 

series as we see at once on performing the inversion 

(4) 

Since the intensity is presumed known at the m + 1 frequencies vi, 

Eqn. (3) becomes the following linear simultaneous equation set whose 

solution, or inversion, is readily accomplished 

There are two faults of this method. First, there io no assurance 

that the observed intensity profile can be reasonably fit by a finite 

sum of inverse powers of K. 

temperature distribution with a truncated power series. Secondly, no 

rationale io provided for the choice of terns in the power series. 

This is equivalent to approximating the 
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Another function class used to generate an interpolation formula 

for the intensity is the quotient polynomial 

m-1 - 

J-1 

An inversion shows the equivalence with an expansion of the temperature 

in a sum of exponential functions 

(7) 

Given 2m values of the intensity, an algorithm exists for deter- 

mining the constants a 

ation is free of the second drawback. Its flaw, however, i s  the inability 

and K,. Thus the exponential function approxim- 

of a finite exponential sum to simulate the normally "bumpy" temperature 

profile . 
Although we have treated two special cases thus far, similar con- 

siderations apply to other orthogonal polynomial expansions of the 

temperature such as Fourier series, Legendre, Laguerre and Chebyshev 

polynomials. As a matter of fact, the intensity profile for all these 

expansions including power series is expressible as a quotient polynomial 

with 

and , 

1' suitable specification of the K 

Still missing is a rationale for choice among the function classes 

given that, a justification for choosing which terms in the sub-class 
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provide the bes t  f i t .  I n  what follows w e  have devised a var iab le  s l a b  

inversion technique which i s  free from these drawbacks and which represents ,  

i n  some sense, the optimum inversion technique. The next sect ion,  which 

descr ibes  the method, appeared as a Note i n  the May 1964 i s sue  of t he  

Journal of the  Atmospheric Sciences. Since the exposit ion was of 

necessi ty  compressed, we  s h a l l  develop the arguments leading t o  the  paper 

a t  g rea t e r  length. 

Returning t o  Eqn. (l), w e  shal l  f ind  it  more convenient t o  treat 

the  in t eg ra l  remaining a f t e r  an in tegra t ion  by p a r t s  
00 

-KU dB du I ( K )  - B ( 0 )  = J e  du 
0 

Using the  fundamental theorem of i n t e g r a l  calculus  we can express 

the  i n t e g r a l  approximately as the sum 

Thus i n  cont ras t  t o  the previous methods which approximated the 

integrand B (u) , we approximate instead the  i n t e p r a l  by constructing a 

quadrature formula. The chief advantage is  g rea t e r  tolerance i n  the  

funct ional  foxm of B(u). The fundamental theorem assures  convergence 

for l a rge  m and remains va l id  even f o r  m i l d  temperature d iscont inui t ies .  

Eqn. (9) holds exact ly  fo r  a temperature d i s t r i b u t i o n  consis t ing of 

isothermal s labs ,  i.e. sums of step functions.  Since the der iva t ive  of 

I 
I 
I 
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a unit step function is a delta function, the temperature gradient is 

a sum of delta functions. Thus we have 

leading upon substitution into Eqn. (8) to 

an exact result. 

Having thus chosen the functional form of our interpolation 

formula for the intensity, we want now to invert the equation for the 

temperature profile. 

interpolation formula conform to the observed intensities 

The first constraint is the requirement that the 

m 
\- 

j-1 

j' 
This is a simultaneous equations set in the 2m unknowns u and AB 

j 
with the u 

function. 

the solutions. 

occuring nonlinearly as the argument of the exponential 
j 
Clearly 2m intensity values I(Ki) are needed to determine 
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One procedure for the solution converts (12) into a linear equation 

set by choosing m fixed values of u 

fashion. In this manner the equations are transformed into the linear 

usually in some evenly spaced 
j' 

matrix form similar to Eqn. (5) since both Ki and u are now given 3 

The inadmissable feature of t h i s  procedure is that our a priori 

choice of slab boundaries u 

to an arbitrarily imposed structure. Put otherwise, an isothermal slab 

forces the temperature profile to conform 
j 

3' has two degrees of freedom: 

By predetermining the u ' 8  we have robbed the temperature profile of 

this t'thicknesst' degree of freedom. It would appear that this i s  too 

great a price to pay for a linearization of the problem. 

its height given by AB and thickness by u 
j 

j 

It is natural to inquire If the nonlinear set (12) can be solved 

directly for the AB and u without imposing, in effect, the artificial 

constraint of predetermined thicknesses. The answer, after a simple 
3 j 

transformation, is affirmative. With the substitution 

the equation set (12) becomes 
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Those famil iar  with numerical ana lys i s  w i l l  recognize the s imilar-  

i t y  t o  an equation set used in the construction of Gaussian quadrature 

formulas given, f o r  example, i n  Chandrasekhar (p. S9) 

, i - 0,1,..., 2m - 1 1 
ai 

The solut ion t o  t h i s  nonlinear set i s  given uniquely by an 

elegant algorithm in which the x ' 8 ,  corresponding t o  the s lab  bound- 

a r i e s  u are found as the roots  of an  algebraic  equation of degree m. 

The weights a (our DB ) then a re  readi ly  found a s  the solut ion of a 

s e t  of m l i nea r  equations. 

condition 

1 

j 

j 5 
It is i n t e re s t ing  t o  note tha t  t h e  uniqueness 

(17) Ki i - - =  0,1,..., 2m - 1 

spec i f i e s  t ha t  we  view the  atmosphere a t  frequencies such tha t  the 

absorption coef f ic ien ts  Ki a r e  in tegra l  multiples of some base value KO. 

Thus our method provides a rat ionale  fo r  the choice of viewing frequencies 

f o r  s t a b i l i t y  in the  inversion process. 

spec i f ica t ion ,  although one misht be i n t u i t i v e l y  l ed  t o  make the equal- 

i n t e rva l  choice here dictated.  

Other techniques lack t h i s  

Some element of choice remains in the base value taken fo r  KO. 

Ordinarily i f  one has 2m viewing channels, K~ would be taken as 

Kmax 
2m-1 a 

m -  
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with i - 0,1,. ..# 2lIl - 1, 
0 

as required by the formula. 

In conclusion we have devised an inversion technique which yields 

the unique configuration of 

nesses Car which conform to 

vantage of the technique is 

ature profile is determined 

3 

m isothermal slabs of heights B and thick- 

2m intensity observations. 

that the structure of the inferred temper- 

solely by the data, and not by any a priori 

j 
The main ad- 

choice of fitting polynomials. 

The close connection between this inversion technique and the 

Guaesian qradrature formula is not fortuitous. It is generic. Gauss 

showed that a strategic choice of m points within an integration inter- 

val leads to a more accurate numerical quadrature as compared to the 

equally-spaced intervals of the Newton-Cotes method. 

problem which is akin to numerical differentiation, the need for 

variable slab thicknesses for optimum fitting is even more compelling. 

In our inversion 
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11. RESEARCH DURING REPORT PERIOD 

I n  the  inversion problem an algorithm i s  sought f o r  t he  inference 

of atmospheric v e r t i c a l  thermal s t ruc ture  from remotely-sensed radio- 

metric observations. 

method, the  var iab le  s l ab  technique, and demonstrate i t s  appl ica t ion  

by two i l l u s t r a t i v e  examples. 

To accomplish t h i s  we propose a new inversion 

A l l  invers ion procedures attempt t o  recover the thermal p r o f i l e  

from observations of the  upwelling in t ens i ty  I (KIP) a t  var ious direc-  

t ions  and/or frequencies. Transfer theory spec i f i e s  the  temperature 

dependence on depth as the  solution of a l i n e a r  i n t e g r a l  equation 
rn 

0 

where B i s  the Planck in t ens i ty  considered here  an impl ic i t  funct ion 

of absorber depth u, and 3 i s  the kerne l  transmittance averaged over 

a narrow frequency in t e rva l  

3(KU/CL)  2 e 
Av 

with K the monochromatic absorption coef f ic ien t .  
V 

For our purposes a simplified gray, plane-parallel ,  fixed-frequency 

-1 model su f f i ces  i n  which the  in tens i ty  i s  scanned over nadir  angle 8 - cos 

Under these conditions the  in tens i ty  is a Laplace transform of the i nd ic i a1  

p. 

funct ion 

bo 
cr I ( l / p )  - B(?) e-"' d?/p * 

0 

-9- 



I 
I 
I 
I 
I 

where we have transformed to the new variable, optical depth 'c - KU. 
Conventionally the temperature profile is approximated by an 

appropriate series expansion 

The series need not be orthogonal but should converge to the exact 

solution. 

I 
I 
I 
I 
I 
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I 
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I 

The substitution of this expansion into Equation ( 2 2 )  identifies 

the intensity with the Laplace transforms of the indicia1 approximation 

Intensity observations at n discrete directions enable one to 

determine n coefficients of the temperature expansion, Equation ( 2 3 )  , 
as the solution of the linear simultaneous equation set 

1 

J 

A variety of different function classes have been used in inversion 

attempts. Examples are power series (King 1959), exponential functions 

(King 1964), and various orthogonal sets euch as Legendre, Chebyshev, or 

Laguerre polynomials (Yamamoto 1961). All these expansions share a 

common defect rendering them unsuitable for the inversion procedure. By 

choosing a particular finite polynomial expansion we restrict the form 

of the thermal profile. 
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Standing in contrast to this analytic procedure in which the 

temperature is broken down into components, is the synthetic method 

which approximates the profile by isothermal slabs. This i s  expressed 

by expanding the lapse-rate in a sum of delta functions 

Proceeding as before, the substitution of this slab approximation 

into the transfer equation yields the equation set 

03 

We have not specified the slab boundaries T Heretofore these 
j' 

positions have been assigned in advance, usually at significant levels 

in the atmosphere where lapse-rate discontinuities are anticipated 

(Kaplan 1959, Wark 1961). Once again a knowledge of the intensity 

profile at the n directions pi leads to a linear equation set determin- 

ing the slab temperatures at n preset intervals 

\- 

J 

As we shall see this synthetic method is extremely sensitive to 

the choice of slab boundaries. 

same criticism holds. The choice of T is critical, forcing in advance 

a particular structure on the slab profile. 

As with the analytic procedure, the 

1 
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We propose, therefore, a variable or floating slab method which 

determines uniquely the slab strengths and thicknesses - for a given 

intensity profile. Consider Equation (28). With the substitution - exp (-1 ) we succeed to a set of nonlinear simultaneous equations xJ j 
each of degree l/pi 

we obtain the equation set of successively higher degree 

j' 
where we have writtenai - I(&) - B(0) and a for (AB) 3 

The equation set arises in the construction of quadrature formulas 

of the Gaussian type (Lanczos 1956, Kopal 1961). Despite its nonlinear- 

ity the set is  soluble uniquely by an elegant algorithm given, for ex- 

ample, by Chandrasekhar (1950) which consists of three steps. First, 

n auxiliary constants d are determined from the linear equation set i 

n-1 
1 1  

The slab boundaries 1 I -la x are then obtained as the n roots of 

the equation 
j J 
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(33) 

j 
The knowledge of the  roots  enables one t o  determine the  weights a 

from the f i r s t  n equations of the s e t  (31). 

The so lu t ion  admits the  in te rpre ta t ion :  Given n isothermal s labs ,  

the  b and ? 

nesses f i t t i n g  the  2n i n t ens i ty  observations. 

- - In  x a r e  the  unique choice of s l ab  weights and thick- 
j j J 

Figure 1 displays three  and five s l ab  stmospheres ingerred from 

in t ens i ty  values of t he  following model atmosphere 

(34) 

The s o l i d  curve is t he  exact solution obtained d i r e c t l y  by inversion 

-'I = 1 - e  e 

The s l ab  approximation is impressive. Note t h a t  t h e  slab thickness 

i s  smallest in the  region of grea tes t  slope,  thus minimizing the  "cor- 

flering" e r ro r ,  

For comparison the same tea In tens i ty  values were used t o  i n f e r  

the  t en  weights of s l abs  bounded a t  t he  t e n  preset i n t e r v a l s  

7 - 0,1 ,0*2 ,* . .~1 .0  J 
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The thermal s t ruc tu re  infer red  by solving the  equation set  (28) fo r  t h i s  

model is grossly u n r e a l i s t i c  (see Table 1). 

The supe r io r i ty  of the f loat ing over the  f ixed s l ab  method can be 

The Gaussian quad- understood by i ts  r e l a t i o n  t o  quadrature formulas, 

r a t u r e  method achieves more accuracy than the  present Newton-Cotes 

i n t e r v a l s  by allowing the  integrand thicknesses t o  vary. 

i n  our inverse  problem we have the addi t iona l  degree of freedom in t he  

determination of t he  s l ab  boundaries as the  unique so lu t ion  of Eqn. (33). 

Similar ly  

A second, more complicated atmospheric thermal p r o f i l e  i n  infer red  

i n  Figure 2 using the  ten  in tens i ty  values 

(3 7) 
1 - - l J Z , . . , , 1 O  , 

Pi 
I ( l /P i )  ID 

(Pi + a2 
The agreement of the infer red  s lab model t o  the  exact so lu t ion  

-2T i e  (38) 

is  remarkable f o r  op t i ca l  depths less  than T % 1. 

o p t i c a l  depth the  divergence is expected s ince  even the  deepest sensing 

(pi - 1) gives l i t t l e  information on the  atmosphere beyond u n i t  op t i ca l  

depth. 

For large values of 

The constant s l a b  s lope (dB/dT = - 0.14) in Figure 2 a r i s e s  from 

the s t i p u l a t i o n  t h a t  t he  weights (AB) 

Equation ( 2 9 ) ,  be pos i t ive  (Kopal, 1961). 

be s a t i s f i e d  by adding a constant slope t o  the lapse-rate  which i s  sub- 

i n  the  Gaussian quadrature formula, 

This requirement can always 
3 
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TABLE 1 

Thermal Profile for Constant Thickness Slabs 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1 

0 .2  

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.0 

0 

-8 2 

+672 

-1314 

-1331 

+3167 

+28 53 

-48 15 

-1250 

+2109 

0 
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sequently subtracted after the inversion operation. 

In a forthcoming paper “Meteorological Inferences from Satellite 

Radiometry, 11” this floating slab method will be applied to thermal 

inferences of synthetic atmospheric models. 

ism to treat arbitrary band transmittance kernels is planned. 

implications of the technique for the error analysis of raw radiometric 

data will be discussed, 

An extension of the formal- 

The 
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111, FORTHCOMING QUARTERLY RESEARCH PROGRAM 

The hallmark of a good theory is the light shed on problems be- 

An example is this Gaussian yond those which brought it into being. 

inversion method which, almost incidentally, provides a rationale for 

the choice of viewing frequencies heretofore lacking, In fairness it 

should also be noted that a successful theory in replying to a problem, 

poses new questions as well. hree of these are: 

1) The uniqueness problem. The elegant algorithm alluded to earlier 

works only if sequential integral values for K ~ / K ~ ,  Mhat if one of a 

sequence ie missing? What happens if non-integral values of Ki/Ko are 

taken? Do multfvalued solutions result? Does the numerical inversion 

become unstable4 

2) Generalization f o  constant lapse-rate slabs. Thus far our inter- 

polation formula for I(K) has been synthesized from isothermal slabs 

of varying thicknesses, Is it possible to synthesize a profile from 

constant lapse-rate slabs? What additional requirements in accuracy 

does this entail? 

3) Generalization to non-gray atmospheres. The formalism to date has 

dealt only with transmittances of an exponential function form. 

this altered if more realistic models are used? 

How is 
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